What is the equation in standard form of the parabola with a focus at (21,15) and a directrix of y= -6?
1 Answer
Jun 15, 2018
(x−21)2=42(y−4.5)
Explanation:
Given -
Focus
Directrix
This parabola opens up. Its origin is away from the origin
Where -
h=21
k=4.5
a=10.5
Look at the graph
Hence the general form of the equation is -
(x−h)2=(4)(a)(x−k)
x−21)2=(4)(10.5)(y−4.5)
(x−21)2=42(y−4.5)