If, y = (√x)+(1/√x) so prove that ? 2x(dy/dx)+y = 2√x

2 Answers
Jun 17, 2018

y+2x(dy/dx)= 2sqrt(x)

Explanation:

y = sqrt(x) + 1 /sqrt(x)

sqrt(x).y = x +1

(1/(2*sqrt(x))).y+sqrt(x).dy/dx = 1

y=2.sqrt(x)(1-sqrt(x).dy/dx)

y=2.sqrt(x) - 2x .dy/dx

y + 2x .(dy/dx) = 2.sqrt(x)

Jun 19, 2018

Please see a Proof in the Explanation.

Explanation:

Given that, y=sqrtx+1/sqrtx=x^(1/2)+x^(-1/2).

Recall that, d/dx(x^n)=n*x^(n-1).

:. dy/dx=1/2*x^(1/2-1)+(-1/2)*x^(-1/2-1).

=1/2*x^(-1/2)-1/2*x^(-3/2),

:. dy/dx=1/2{x^(-1/2)-x^(-3/2)}.

Multiplying this eqn. by 2x, we get,

2xdy/dx=cancel(2)x*1/cancel(2){x^(-1/2)-x^(-3/2)},

=x*x^(-1/2)-x*x^(-3/2),

i.e., 2xdy/dx=x^(1/2)-x^(-1/2)=sqrtx-1/sqrtx.

Finally, adding y=sqrtx+1/sqrtx, we have,

2xdy/dx+y=(sqrtxcancel(-1/sqrtx))+(sqrtxcancel(+1/sqrtx)),

or, 2xdy/dx+y=2sqrtx,

as Respected Abhishek Malviya has readily derived!