How do you find the derivative of e^(-3x)?

2 Answers
Jun 18, 2018

(dy)/(dx)=-3e^(-3x)

Explanation:

using the chain rule

(dy)/(dx)=(dy)/(du)color(red)((du)/(dx))

y=e^(-3x)

color(red)(u=-3x=>(dy)/(du)=-3)

(dy)/(du)=d/(du)(e^u)=e^u

:.(dy)/(dx)=(dy)/(du)color(red)((du)/(dx))=e^uxxcolor(red)((-3))

=-3e^u=-3e^(-3x)

in general:

d/(dx)(e^(f(x)))=f'(x)e^(f(x))

Jun 22, 2018

color(brown)(f'(x) = -3 e^-(3x)

Explanation:

f(x) = e^-(3x)

f'(x) = (d/(dx)) e^-(3x)

f'(x) = e^(-3x) * (d/(dx)) (-3x)

f'(x) = e^-(3x) * -3

color(brown)(f'(x) = -3 e^-(3x)