What is the derivative of f(x) = e^(x^2 + lnx^3)?
1 Answer
Jun 18, 2018
f'(x) = e^(x^2+lnx^3) (2x + 3/x)
Explanation:
We have:
f(x) = e^(x^2+lnx^3)
So by the chain rule we have:
f'(x) = e^(x^2+lnx^3) \ d/dx {x^2+lnx^3}
\ \ \ \ \ \ \ \ = e^(x^2+lnx^3) d/dx {x^2 + 3lnx}
\ \ \ \ \ \ \ \ = e^(x^2+lnx^3) (2x + 3/x)