What is the derivative of #f(x) = e^(x^2 + lnx^3)#?
1 Answer
Jun 18, 2018
# f'(x) = e^(x^2+lnx^3) (2x + 3/x)#
Explanation:
We have:
# f(x) = e^(x^2+lnx^3) #
So by the chain rule we have:
# f'(x) = e^(x^2+lnx^3) \ d/dx {x^2+lnx^3}#
# \ \ \ \ \ \ \ \ = e^(x^2+lnx^3) d/dx {x^2 + 3lnx}#
# \ \ \ \ \ \ \ \ = e^(x^2+lnx^3) (2x + 3/x)#