What is the derivative of f(x) = e^(x^2 + lnx^3)?

1 Answer
Jun 18, 2018

f'(x) = e^(x^2+lnx^3) (2x + 3/x)

Explanation:

We have:

f(x) = e^(x^2+lnx^3)

So by the chain rule we have:

f'(x) = e^(x^2+lnx^3) \ d/dx {x^2+lnx^3}

\ \ \ \ \ \ \ \ = e^(x^2+lnx^3) d/dx {x^2 + 3lnx}

\ \ \ \ \ \ \ \ = e^(x^2+lnx^3) (2x + 3/x)