If y = f(x)g(x), then dy/dx = f‘(x)g‘(x). If it is true, explain your answer. If false, provide a counterexample. True or False?

2 Answers
Jun 18, 2018

False

Explanation:

Take f(x)=x^2+1,g(x)=x
then

f(x)g(x)=x^3+x
then
f'(x)*g'(x)=2x
But

(f(x)g(x))'=3x^2+1
It must be
(f(x)g(x))'=f'(x)*g(x)+f(x)*g'(x)

Jun 18, 2018

The statement is false .

The product rule provides the correct formulation:

y = f(x)g(x) => y = f(x)g'(x) + f'(x)g(x)

Explanation:

We can readily disprove the given statement:

Consider:

f(x)=x and g(x)=x

Then differentiating wrt x we have:

f'(x)=1 and g'(x)=1 => f'(x)g'(x)=1

And y=f(x)g(x) =x^2 => dy/dx = 2x != f'(x)g'(x)

And so By counterexample, the statement is false .

In fact the product rule provides the correct formulation:

y = f(x)g(x) => y = f(x)g'(x) + f'(x)g(x)