Solve using double angles?. Sin2x-sinx=0

2 Answers
Jun 18, 2018

x = pm 2 pi n, frac(pi)(3) pm 2 pi nx=±2πn,π3±2πn; where n in ZZ.

Explanation:

We have: sin(2 x) - sin(x) = 0

Using the double-angle identity for sin(x), we get:

Rightarrow 2 sin(x) cos(x) - sin(x) = 0

Rightarrow sin(x) (2 cos(x) - 1) = 0

Rightarrow sin(x) = 0

Rightarrow x = 0 pm 2 pi n; n in ZZ

Rightarrow x = pm 2 pi n; n in ZZ

or

Rightarrow cos(x) = frac(1)(2)

Rightarrow x = frac(pi)(3) pm 2 pi n; n in ZZ

Therefore, the general solutions to the equation are x = pm 2 pi n or x = frac(pi)(3) pm 2 pi n, where n in ZZ.

Jun 18, 2018

x=kpi" or "x=pi/3+2kpi

Explanation:

"using the "color(blue)"trigonometric identity"

•color(white)(x)sin2x=2sinxcosx

2sinxcosx-sinx=0

sinx(2cosx-1)=0

"equate each factor to zero and solve for "x

sinx=0rArrx=kpito(k in ZZ)

cosx=1/2rArrx=pi/3+2kpito(k inZZ)