Find (f/g)(4) and (f+g)(4)?

If f(x)=x^2+2x-3 and g(x)=x^2-9, Find (f/g)(4) and (f+g)(4)

2 Answers
Jun 21, 2018

(f/g)(4)=(f(4))/(g(4))=(21)/7=3
(f+g)(4)=f(4)+g(4)=21+7=28

Explanation:

The notation (f/g)(x) is just a way to say (f(x))/(g(x)) and
(f+g)(x) is another way to say f(x)+g(x)
(fg)(x) is another way to say f(x)*g(x)

Jun 21, 2018

(f/g)(4)=3, (f+g)(4)=28

Explanation:

f(x)=x^2+2x-3 , g(x)=x^2-9
f(4)=4^2+2*4-3=16+8-3=21
g(4)=4^2-9=16-9=7

(f/g)(4)=f(4)/g(4)

(f/g)(4)=21/7=3

(f+g)(4)=f(4)+g(4)

(f+g)(4)=21+7=28