How do you solve 25^ { x } - 8\cdot 5^ { x } = - 1625x85x=16?

2 Answers
Jun 22, 2018

x=log_5(2)x=log5(2)

Explanation:

(5^2)^x-8 *5^x=-16(52)x85x=16
t^2-8t=-16t28t=16
t=4t=4
5^x=45x=4

Jun 22, 2018

color(maroon)(x = log 4 / log 5 = 0.8614x=log4log5=0.8614

Explanation:

25^x - 8 * 5^x + 16 = 025x85x+16=0

Let 5^x = a5x=a

=> a^2 - 8a + 4^2 = 0a28a+42=0

(a-4)^2 = 0(a4)2=0

:. a = 4

a = 5^x = 4

x log 5 = log 4

x = log(4) / log(5) = 0.8614