How to solve (49x^2)^3/2 ÷ (9y^4)^3/2?

2 Answers
Jun 22, 2018

= ((7x)/ (3y^2))^3 = (343x^3)/ (27y^6)=(7x3y2)3=343x327y6

Explanation:

Considering the question to be:

(49x^2)^(3/2) ÷ (9y^4)^(3/2)(49x2)32÷(9y4)32

Solution:
(49x^2)^(3/2) ÷ (9y^4)^(3/2)(49x2)32÷(9y4)32 can be written as:

=>(7^2 x^2)(3/2) ÷ (3^2y^4)^(3/2)(72x2)(32)÷(32y4)32

=> ((7x)^2)3/2 ÷( (3y^2)^2)^(3/2)((7x)2)32÷((3y2)2)32

=>(7x)^(2xx3/2 )÷ ( 3y^2)^(2xx^3/2)(7x)2×32÷(3y2)2×32

=>(7x)^3÷ ( 3y^2)^3 = ((7x)/ (3y^2))^3(7x)3÷(3y2)3=(7x3y2)3

=> (343x^3)/ (27y^6)343x327y6

Jun 23, 2018

=343/(27x^3)=34327x3

Explanation:

(49x^2)^(3/2)\div(9y^4)^(3/2)(49x2)32÷(9y4)32

Fractional exponent: the denominator is the value of the root, and the numerator is an exponent of the value (it goes inside the root).
So a^(3/2)a32 becomes \sqrt(a^3)a3

Thus, you now have
\sqrt((49x^2)^3)\div\sqrt((9y^4)^3)(49x2)3÷(9y4)3

Exponent of exponent: multiply them.
\therefore\sqrt(117649x^6)\div\sqrt(729x^12)

Change back to fractional exponents for the variable, so you can multiply:
[\sqrt(117649)\cdot(x^6)^(1/2)]\div[\sqrt(729)\cdot(y^12)^(1/2)]
[\sqrt(117649)\cdot(x^3)]\div[\sqrt(729)\cdot(y^6)]

Now simplify.
[\sqrt(117649)\cdot(x^3)]/[\sqrt(729)\cdot(y^6)]=(343x^3)/(27y^6)

(by the way, use a calculator for the square roots)