If tan x = -3/4 and pi/2<x<pi find values of cos x and sin x?

tan x = -3/4 andpi/2 <x<pi find the value of cos x and sin x

2 Answers
Jun 22, 2018

cosx=-4/5 and sinx=3/5

Explanation:

Here,

tanx=-3/4 < 0 and pi/2 < x < pi=>II^(nd)Quadrant

So,

color(red)(sinx > 0 and cosx < 0

Now,

sec^2x=1+tan^2x=1+9/16=25/16

=>cos^2x=1/sec^2x=16/25

=>color(blue)(cosx=-4/5to[becausecosx < 0]

We know that,

sin^2x=1-cos^2x=1-16/25=9/25

=>color(blue)(sinx=+3/5to[becausesinx > 0]

Hence,

cosx=-4/5 and sinx=3/5

Jun 22, 2018

Second quadrant, positive sine and negative cosine,

cos x= - 4/5

sin x= 3/5

Explanation:

We're looking for x in the second quadrant, so we want a positive sine and negative cosine.

In general, the multivalued

arctan (a/b)

refers to a right triangle, opposite a, adjacent b so hypotenuse sqrt{a^2+b^2}. The sign on the square root is always ambiguous in these, so

cos arctan(a/b) = pm b/sqrt{a^2+b^2}

sin arctan(a/b) = pm a/sqrt{a^2+b^2}

Of course 3^2+4^2=5^2 so the hypotenuse is 5.

cos arctan({-3}/4) = pm 4/5

sin arctan({-3}/4) = pm 3/5

We want a positive sine and negative cosine.

cos x= - 4/5

sin x= 3/5