Here,
#sin7x+sin4x+sinx=0 , where , x in(0,pi/2)#
#=>sin7x+sinx+sin4x=0#
#=>2sin((7x+x)/2)cos((7x-x)/2)+sin4x=0#
#=>2sin4xcos3x+sin4x=0#
#=>sin4x(2cos3x+1)=0#
#=>sin4x=0 or2cos3x=-1#
#=>sin4x=0 orcos3x=-1/2#
#(1)sin4x=0=>2sin2xcos2x=0#
#=>sin2x=0 or cos2x=0#
#=>2sinxcosx=0 or 2cos^2x-1=0#
#=>sinx=0 or cosx=0 orcos^2x=1/2#
#=>sinx=0 or cosx=0, cosx=-1/sqrt2 or cosx=1/sqrt2#
#color(red)((i)sinx=0=>x=0 !in(0,pi/2)#
#color(red)((ii)cosx=0=>x=pi/2!in(0,pi/2)#
#color(red)((iii)cosx=-1/sqrt2 < 0=>x!in(0,pi/2)#
#color(blue)((iv)cosx=1/sqrt2=>x=pi/4 in(0,pi/2)#
#(2)cos3x=0=>4cos^3x-3cosx=0#
#=>cosx(4cos^2x-3)=0#
#=>cosx=0 or 4cos^2x=3#
#=>cosx=0 or cos^2x=3/4=(sqrt3/2)^2#
#=>cosx=0 or cosx=-sqrt3/2 or cosx=sqrt3/2#
#color(red)((i)cosx=0=>x=pi/2 !in(0,pi/2)#
#color(red)((ii)cosx=-sqrt3/2 <0=>x !in (0,pi/2)#
#color(blue)((iii)cosx=sqrt3/2=>x=pi/6 in(0,pi/2)#
But ,
#x=pi/6=>sin7(pi/6)+sin4(pi/6)+sin(pi/6)!=0#
So, #color(red)(x!=pi/6#
Hence,
#x=pi/4 #