If #hata_1,hata_2andhata_3 #are unit vectors and#2hata_1+2hata_2+hata_3=0# then angle between #hata_1 and hata_2 # is?

answer wrt sinh

1 Answer
Jun 23, 2018

#cos^-1(-7/8) ~~ 151^circ#

Explanation:

#hat a_3 = -2( hat a_1+hat a_2) implies#
#hat a_3^2 =4 (hat a_1+hat a_2)^2#
#qquad = 4 (hat a_1^2+hat a_2^2+2 hat a_1 cdot hat a_2) implies#
#1 = 4(1+1 +2 hat a_1 cdot hat a_2 ) implies#
# hat a_1 cdot hat a_2 = -7/8#

Thus, the angle #theta# between #hat a_1# and #hat a_2# is given by

#cos theta = (hat a_1 cdot hat a_2)/(|hat a_1| \ |hat a_2|)= -7/8# and thus

#theta = cos^-1(-7/8) ~~ 151^circ#