How to Prove the identity?

(1/cosx-tanx)^2= (1-sinx)/(1+cosx)

1 Answer
Jun 23, 2018

x=0 is a counterexample; the correct formulation is

(1/cos x - tan x)^2 = {1 - sin x}/{1 + sin x}

Explanation:

x=0 is a counterexample:

(1/cos x - tan x)^2 =(1/1 - 0)^2=1

(1-sinx)/(1+cos x)=(1-0)/(1+1)=1/2 quad NOT EQUAL

The correct formulation is

(1/cos x - tan x)^2 = {1 - sin x}/{1 + sin x}

Proof:

(1/cos x - tan x)^2

= (1/cos x - sin x/cos x)^2

= ((1 - sin x)/cos x)^2

= (1 - sin x)^2/cos ^2 x

= (1 - sin x)^2/(1 - sin ^2 x)

= (1 - sin x)^2/{(1 - sin x)(1 + sin x)}

= {1 - sin x}/{1 + sin x}