How do you resolve this integral?

int(e^x+sqrt(1+e^x))/(2+e^x-e^(2x))dx

1 Answer
Jun 24, 2018

1/3 log|(1+e^x)/(2-e^x)|+1/2 log|(sqrt(1+e^x)-1)/(sqrt(1+e^x)+1)|
qquad +sqrt3/6|(sqrt3+sqrt(1+e^x))/(sqrt3-sqrt(1+e^x))|+C

Explanation:

Substitute 1+e^x=u^2. Then e^x dx = 2u\ du. Thus the integral becomes

int\ (e^x+sqrt(1+e^x))/(2+e^x-e^(2x))dx = int\ (u^2-1+u)/(2+(u^2-1)-(u^2-1)^2) (2u\ du)/(u^2-1)
qquad = int\ (2u(u^2+u-1))/((u^2-1)(-u^4+3u^2))\ du
qquad = int\ (2(u^2+u-1))/(u(u^2-1)(3-u^2))\ du

We will now evaluate this integral by the method of partial fractions. Consider :

(u^2+u-1)/(u(u^2-1)(3-u^2))= A/u+B/(u-1)+C/(u+1)
qquad qquad qquad qquad qquad qquad qquad qquad +D/(sqrt3-u)+E/(sqrt3+u)
Thus

u^2+u-1 = A(u^2-1)(3-u^2)+Bu(u+1)(3-u^2)
qquadqquadqquadquad +Cu(u-1)(3-u^2)+Du(u^2-1)(sqrt3+u)
qquadqquadqquadquad +Eu(u^2-1)(sqrt3-u)

  • Substituting u=0, we get
    -3A=-1 implies color(red)(A=1/3)
  • Substituting u=1, we get
    \ 4B=1 implies color(red)(B=1/4)
  • Substituting u=-1, we get
    4C=-1 implies color(red)(C=-1/4)
  • Substituting u=sqrt3, we get
    12D=2+sqrt3 implies color(red)(D=(2+sqrt3)/12)
  • Substituting u=-sqrt3, we get
    -12E=2-sqrt3 implies color(red)(E=-(2-sqrt3)/12)

Thus

(u^2+u-1)/(u(u^2-1)(3-u^2))= 1/(3u)+ 1/(4(u-1))-1/(4(u+1))
qquad qquad qquad qquad qquad qquad qquad qquad +(2+sqrt3)/(12(sqrt3-u))-(2-sqrt3)/(12(sqrt3+u))

Hence our integral becomes

int\ (2(u^2+u-1))/(u(u^2-1)(3-u^2))\ du = int[2/(3u)+ 1/(2(u-1))
qquad qquad -1/(2(u+1))+(2+sqrt3)/(6(sqrt3-u))-(2-sqrt3)/(6(sqrt3+u))]du
qquad = 2/3 log |u|+1/2 log|u-1|-1/2log|u+1|
qquadqquad -(2+sqrt3)/6 log|sqrt3-u|-(2-sqrt3)/6 log|sqrt3+u|+C
qquad = 2/3 log |u|+1/2 log|(u-1)/(u+1)|
qquadqquad -1/3log|3-u^2 |+sqrt3/6|(sqrt3+u)/(sqrt3-u)|

Substituting u back in terms of x, the required integral becomes

int\ (e^x+sqrt(1+e^x))/(2+e^x-e^(2x))dx
qquad =1/3 log(1+e^x)+1/2 log|(sqrt(1+e^x)-1)/(sqrt(1+e^x)+1)|
qquadqquad -1/3log|2-e^x|+sqrt3/6|(sqrt3+sqrt(1+e^x))/(sqrt3-sqrt(1+e^x))|+C