(ln^2 x)/x integral from 1 to e^2 is?

e21ln2xxdx =?

2 Answers
Jun 24, 2018

I=83

Explanation:

We want to evaluate

I=e21ln2(x)xdx

Make a substitution u=ln(x)du=1xdx

New limits x=1u=0 and x=e2u=2

I=20u2xxdu=20u2du=13[u3]20=83

Jun 24, 2018

83

Explanation:

to integrate e21ln2xxdx first
substitute u=lnx so dudx=1x therby dx=xdu and x=eu
plugging this in will give:
20u2eueudu the eu cancels out and we get:
20u2du now we can use power rule to get:
u3320 now we can resubstitute u=lnx
and we will get: ln3x3e21 which we can calculate as follows: ln3(e2)3ln3(1)3=8303=83