How do you solve #cos^2 theta=2cos^2 (theta/2)# in the domain #0<=theta<=360#?

2 Answers
Jun 26, 2018

The solutuions are #S={128.2^@, 231.8^@}#

Explanation:

We need

#costheta=2cos^2(theta/2)-1#

#-1<=costheta<=1#

Then, the equation is

#cos^2theta=2cos^2(theta/2)#

#cos^2theta=costheta+1#

#cos^2theta-costheta-1=0#

This is a quadratic equation in #cos^2theta#

The solutions are

#costheta=(1+-sqrt((-1)^2-4(1)(-1)))/(2)#

#=(1+-sqrt5)/2#

#{(costheta=1.62),(costheta=-0.618):}#

#=>#, #{(theta=O/),(theta=128.2^@ ; 231.8^@):}#

#\theta=128.18^\circ, 231.82^\circ#

Explanation:

Given that

#\cos^2\theta=2\cos^2\frac{\theta}{2}#

#(2\cos^2\frac{\theta}{2}-1)^2=2\cos^2\frac{\theta}{2}#

#4\cos^4\frac{\theta}{2}+1-4\cos^2\frac{\theta}{2}=2\cos^2\frac{\theta}{2}#

#4\cos^4\frac{\theta}{2}-6\cos^2\frac{\theta}{2}+1=0#

Solving above quadratic equation in terms of #\cos^2\frac{\theta}{2}# using quadratic formula as follows

#\cos^2\frac{\theta}{2}=\frac{-(-6)\pm\sqrt{(-6)^2-4(4)(1)}}{2(4)}#

#\cos^2\frac{\theta}{2}=\frac{3\pm\sqrt{5}}{4}#
But , #0\le\cos^2\frac{\theta}{2}\le1#

#\therefore \cos^2\frac{\theta}{2}=\frac{3-\sqrt{5}}{4}#

#\cos^2\frac{\theta}{2}=(\frac{\sqrt5-1}{2\sqrt2})^2#

Let #\cos^2\frac{\theta}{2}=\cos^2\alpha#

#\frac{\theta}{2}=n\pi\pm\alpha#

#\theta=2(n\pi\pm\alpha)#

Where, #\cos\alpha=\frac{\sqrt5-1}{2\sqrt2}=64.09^\circ# &
#n# is any integer i.e. #n=0, \pm1, \pm2, \pm3, \ldots#

But since, #0\le\theta\le360^\circ# hence, setting #n=0\ &\ 1# & taking positive & negative signs respectively, we get two values of #\theta# as follows

#\theta=2(0+64.09^\circ), 2(180^\circ-64.09^\circ)#
#=128.18^\circ, 231.82^\circ#