Solve the differential equation cos(x)dy/dx+y=sin(x) given that Y=2 when X=0 ?

1 Answer
Jun 26, 2018

#y= 1-((x-1)cosx)/(1+sinx)#

Explanation:

For #x != pi/2 + kpi# divide by #cosx#:

#dy/dx +y secx = tanx#

Solve first the homogeneous equation:

#dy/dx + ysecx= 0#

which is separable:

#dy/dx = -ysecx#

#dy/y = - secxdx#

#int dy/y = -int secxdx#

#lnabs y = -ln abs(secx+tanx) +C#

#y = c/(secx+tanx)#

Using the method of variable coefficient look now for a particular solution of the complete equation in the form:

#bar y = (c(x))/ (secx+tanx)#

#(dbary)/dx = (c'(x) (secx+tanx) -c(x)(secxtanx +sec^2x))/(secx+tanx)^2#

#(dbary)/dx = (c'(x) (secx+tanx) -secx c(x)(secx +tanx))/(secx+tanx)^2#

#(dbary)/dx = (c'(x) -secx c(x))/(secx+tanx)#

Substitute in the complete equation:

#(dbary)/dx +ysecx = tanx#

#(c'(x) -secx c(x))/(secx+tanx)+(c(x) secx)/(secx+tanx) = tanx#

#(c'(x))/(secx+tanx)= tanx#

#c'(x)= secxtanx+tan^2x#

Using the trigonometric identity: #tan^2x = sec^2x-1#

#c'(x)= secxtanx+sec^2x-1#

#c(x) = int (secxtanx+sec^2x-1)dx#

#c(x) = secx+tanx -x +c_1#

Choose the solution for #c_1 =0#:

#bary = (secx+tanx -x)/(secx+tanx) = 1-x/(secx+tanx)#

The complete solution is then:

#y = c/(secx+tanx) -x/(secx+tanx) +1#

#y= 1-(x-c)/(secx+tanx)#

In fact:

#dy/dx = ((x-c)secx-1)/(secx+tanx)#

#cosx dy/dx +y =((x-c)-cosx)/(secx+tanx)+1-(x-c)/(secx+tanx) = #

#:. = 1- cosx/(secx+tanx)#

#:. = (secx+tanx- cosx)/(secx+tanx)#

#:. = (1+sinx- cos^2x)/(1+sinx)#

#:. = (sin^2x+sinx)/(1+sinx) = sinx#

Note that we can write the general solution also as:

#y= 1-((x-c)cosx)/(1+sinx)#

If we let #x=0# then:

#y(0) = 1+c#

so that from the initial condition:

#y(0) = 2# we get #c=1#.

#y= 1-((x-1)cosx)/(1+sinx)#