4 cards selected randomly from pack of 52 cards find the probability of selecting at most one heart card?

2 Answers
Jun 26, 2018

The probability is approximately 0.7427.

Explanation:

#"P"("at most 1 heart") = "P"("0 hearts") + "P"("1 heart")#

#"P"("0 hearts") = (""_39C_4)/(""_52C_4) = 82251/270725#

#"P"("1 heart") = (""_13C_1 xx ""_39C_3)/(""_52C_4)=(13 xx 9139)/270725=118807/270725#

#:.#
#"P"("at most 1 heart") = 82251/270725+118807/270725#

#color(white)("P"("at most 1 heart"))= 201058/270725#

#color(white)("P"("at most 1 heart"))= 15466/20825" "~~74.27%#

Jun 26, 2018

#189/256#

Explanation:

We can set up a binomial distribution

#X tilde "" B(4,1/4) #

So at most hence meaning

#P(X<=1) = P(X=0) +P(X=1) #

For #X tilde "" B(n,p) #

#P(X=x) = (nCx)* p^x* (1-p)^(n-x) #

#P(X=0)+P(X=1) = ... #

# ... = ((4C0 ) * 1/4 ^ 0 * 3^4/4^4) +( (4C1) * 1/4^1 + 3^3/4^3) #

# = 189/256 #

NOTE : This solution is based upon replacing the card each time