H_2H2 (g) + F_2F2 (g) \rightleftharpoons2HF⇌2HF (g), find final values of [H_2]_(eq)[H2]eq, [F_2]_(eq)[F2]eq, and [HF]_(eq)[HF]eq?
k=1.15xx10^2k=1.15×102
If 3.0003.000 mol of H_2H2 , F-2F−2 and HFHF are added to a 1.5001.500 L flask...
(find final values)
If
(find final values)
1 Answer
["H"_2]_(eq) = ["F"_2]_(eq) = "0.471 M"[H2]eq=[F2]eq=0.471 M
["HF"]_(eq) = "5.06 M"[HF]eq=5.06 M
I assume you have given the equilibrium constant
The reaction was:
"H"_2(g) + "F"_2(g) rightleftharpoons 2"HF"(g)H2(g)+F2(g)⇌2HF(g)
In a
["H"_2]_i = "3.000 mols"/"1.500 L" = "2.000 M"[H2]i=3.000 mols1.500 L=2.000 M
["F"_2]_i = "3.000 mols F"_2/"1.500 L" = "2.000 M"[F2]i=3.000 mols F21.500 L=2.000 M
["HF"]_i = "3.000 mols HF"/"1.500 L" = "2.000 M"[HF]i=3.000 mols HF1.500 L=2.000 M
So, the ICE table uses concentrations to give:
"H"_2(g) " "+" " "F"_2(g) " "rightleftharpoons" " 2"HF"(g)H2(g) + F2(g) ⇌ 2HF(g)
"I"" "2.000" "" "" "2.000" "" "" "2.000I 2.000 2.000 2.000
"C"" "-x" "" "" "-x" "" "" "+2xC −x −x +2x
"E"" "2.000-x" "2.000-x" "2.000+2xE 2.000−x 2.000−x 2.000+2x ...remembering that coefficients go into the change in concentration.
Here we assumed that the reaction goes forward. If you calculate
Q_c = ("2.000 M HF")^2/("2.000 M H"_2 cdot "2.000 M F"_2) = 1Qc=(2.000 M HF)22.000 M H2⋅2.000 M F2=1
(Since
Therefore, we can set up the
1.15 xx 10^2 = (2.000 + 2x)^2/((2.000 - x)(2.000 - x))1.15×102=(2.000+2x)2(2.000−x)(2.000−x)
This is nice in that it is a perfect square. That is one situation where no approximations need to be made and it is quite solvable without the quadratic formula.
sqrt(1.15 xx 10^2) = 10.72 = (2.000 + 2x)/(2.000 - x)√1.15×102=10.72=2.000+2x2.000−x
We only take
10.72(2.000 - x) = 2.000 + 2x10.72(2.000−x)=2.000+2x
21.45 - 10.72x = 2.000 + 2x21.45−10.72x=2.000+2x
19.45 = 12.72x19.45=12.72x
x = "1.53 M"x=1.53 M
Note that we lost a solution of
Anyways, we now get the equilibrium concentrations to be:
color(blue)(["H"_2]_(eq) = ["F"_2]_(eq) = 2.000 - x = "0.471 M")[H2]eq=[F2]eq=2.000−x=0.471 M
color(blue)(["HF"]_(eq) = 2.000 + 2x = "5.06 M")[HF]eq=2.000+2x=5.06 M
And just to check,
K_c = (5.06^2)/((0.471)(0.471)) = 115.41 ~~ 115Kc=5.062(0.471)(0.471)=115.41≈115 color(blue)(sqrt"")√