Show that ((1+tanx-secx)/(secx+tanx-1))= (1+secx-tanx)/(secx+tanx+1)?

2 Answers
Jun 27, 2018

Yes

Explanation:

Let

u=1+secx+tanxu=1+secx+tanx , w=tanx-secxw=tanxsecx

(1+w)/(u-2)=(1-w)/u1+wu2=1wu

cancelu+uw=cancelu-uw+2w-2

uw=w-1

Substitute

(1+secx+tanx)(tanx-secx)=tanx-secx-1

canceltanxcancel(-secx)cancel(+secxtanx)-sec^2x+tan^2xcancel(-secxtanx)=canceltanxcancel(-secx)-1

sec^2x-tan^2x=1

:.

Jun 27, 2018

We know

sec^2x-tan^2x=1

=>(secx-tanx)(secx+tanx)=1

=>(secx+tanx)/1=1/(secx-tanx)

By componendo and dividendo

=>(secx+tanx+1)/(secx+tanx-1)=(1+secx-tanx)/(1-secx+tanx)

=>(1+tanx-secx)/(secx+tanx-1)=(1+secx-tanx)/(secx+tanx+1)