Integral of xsin2(x2)dx?

1 Answer
Jun 27, 2018

xsin2(x2)dx=12cot(x2)+c

Explanation:

Let u=x2, then 12u=xdx:

121sin2(u)du

Substitute 1sin2(u)=csc2(u):

12csc2(u)du

12cot(u)+c

Reverse the substitution:

xsin2(x2)dx=12cot(x2)+c