Calculate the pH of a 0.10 M H_3PO_4H3PO4 solution that is also 0.0005 M (NH_4)_3PO_4(NH4)3PO4?
K_(a_1)=1.0xx10^-6Ka1=1.0×10−6
K_(a_2)=1.0xx10^-8Ka2=1.0×10−8
K_(a_3)=1.0xx10^-10Ka3=1.0×10−10
Reactions used:
H_3PO_4(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+H_2PO_4^(-)(aq)H3PO4(aq)+H2O(l)⇌H3O+(aq)+H2PO−4(aq)
H_2PO_4^(-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+HPO_4^(2-)(aq)H2PO−4(aq)+H2O(l)⇌H3O+(aq)+HPO2−4(aq)
HPO_4^(2-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+PO_4^(3-)(aq)HPO2−4(aq)+H2O(l)⇌H3O+(aq)+PO3−4(aq)
We are asked to use an ICE table at least once.
Reactions used:
H_3PO_4(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+H_2PO_4^(-)(aq)H3PO4(aq)+H2O(l)⇌H3O+(aq)+H2PO−4(aq) H_2PO_4^(-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+HPO_4^(2-)(aq)H2PO−4(aq)+H2O(l)⇌H3O+(aq)+HPO2−4(aq) HPO_4^(2-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+PO_4^(3-)(aq)HPO2−4(aq)+H2O(l)⇌H3O+(aq)+PO3−4(aq)
We are asked to use an ICE table at least once.
2 Answers
Unfortunately, these
K_(a1) = 7.5 xx 10^(-3)Ka1=7.5×10−3
K_(a2) = 6.3 xx 10^(-8)Ka2=6.3×10−8
K_(a3) = 4.5 xx 10^(-13)Ka3=4.5×10−13
The magnitude of
When I do that, I get
Apparently, the salt was enough to negate the second dissociation.
DISCLAIMER: REALLY LONG ANSWER!
The
"PO"_4^(3-)(aq) + "H"_2"O"(l) rightleftharpoons "HPO"_4^(2-)(aq) + "OH"^(-)(aq)PO3−4(aq)+H2O(l)⇌HPO2−4(aq)+OH−(aq)
"I"" "0.0005" "" "" "" "-" "" "" "0" "" "" "" "0I 0.0005 − 0 0
"C"" "-x" "" "" "" "" "-" "" "+x" "" "" "+xC −x − +x +x
"E"" "0.0005-x" "" "-" "" "" "x" "" "" "" "xE 0.0005−x − x x
This has
(In actuality, it is
The first... actual acid ICE table is:
"H"_3"PO"_4(aq) + "H"_2"O"(l) rightleftharpoons "H"_3"O"^(+)(aq) + "H"_2"PO"_4^(-)(aq)H3PO4(aq)+H2O(l)⇌H3O+(aq)+H2PO−4(aq)
"I"" "0.10" "" "" "" "-" "" "" "0" "" "" "" "" "0I 0.10 − 0 0
"C"" "-x" "" "" "" "-" "" "+x" "" "" "" "+xC −x − +x +x
"E"" "0.10-x" "" "-" "" "" "x" "" "" "" "" "xE 0.10−x − x x
The first
7.5 xx 10^(-3) = (["H"_3"O"^(+)]["H"_2"PO"_4^(-)])/(["H"_3"PO"_4])7.5×10−3=[H3O+][H2PO−4][H3PO4]
= (x^2)/(0.10-x)=x20.10−x
The small
= x^2/(0.10)=x20.10
=> x = sqrt(0.10 cdot 7.5 xx 10^(-3)) = "0.0274 M"⇒x=√0.10⋅7.5×10−3=0.0274 M
That is the first
["H"_3"O"^(+)]_(eq1) ~~ "0.0274 M" = ["H"_3"O"^(+)]_(i2)[H3O+]eq1≈0.0274 M=[H3O+]i2
["H"_2"PO"_4^(-)]_(eq1) ~~ "0.0274 M" -= ["H"_2"PO"_4]_(i2)[H2PO−4]eq1≈0.0274 M≡[H2PO4]i2
["H"_3"PO"_4]_(eq1) ~~ "0.0726 M"[H3PO4]eq1≈0.0726 M
So now, we have the second ICE table, already accounting for the
"H"_2"PO"_4^(-)(aq) + "H"_2"O"(l) rightleftharpoons "H"_3"O"^(+)(aq) + "HPO"_4^(2-)(aq)H2PO−4(aq)+H2O(l)⇌H3O+(aq)+HPO2−4(aq)
"I"" "0.0274" "" "" "-" "" "" "0.0274" "" "" "0.0005I 0.0274 − 0.0274 0.0005
"C"" "-x" "" "" "" "-" "" "" "+x" "" "" "+xC −x − +x +x
"E"" "0.0274-x" "-" "" "" "0.0274+x" "0.0005+xE 0.0274−x − 0.0274+x 0.0005+x
Now, the cumulative
["H"_3"O"^(+)]_(eq) = ["H"_3"O"^(+)]_(eq1) + x[H3O+]eq=[H3O+]eq1+x
Set up the second
6.3 xx 10^(-8) = (["H"_3"O"^(+)]["HPO"_4^(2-)])/(["H"_2"PO"_4^(-)])6.3×10−8=[H3O+][HPO2−4][H2PO−4]
= ((0.0274+x)(0.0005+x))/(0.0274-x)=(0.0274+x)(0.0005+x)0.0274−x
In this case, since
6.3 xx 10^(-8) = ((0.0274cancel(+x)^"small")(0.0005+x))/(0.0274cancel(-x)^"small")
~~ 0.0005 + x
Therefore,
x ~~ -"0.0005 M"
Apparently, the salt is enough to reverse the direction of this reaction.
color(blue)(["H"_3"O"^(+)]_(eq)) = ["H"_3"O"^(+)]_(eq1) + ["H"_3"O"^(+)]_(eq2)
= "0.0274 M" + (-"0.0005 M")
~~ color(blue)("0.0269 M")
So, the
"pH" = -log["H"_3"O"^(+)]_(eq) = color(blue)(1.57)
This is using the
Explanation:
Following the same ICE tables as the answer above (? I will check to make sure. If they don't match, I will upload a picture of my work asap)
- derived from table 1,
K_(a_1)=1.0xx10^-6=(x*x)/(0.10-x)
x^2\cong(1.0xx10^-6)(0.10)
x=\approx3.2xx10^-4 M - derived from table 2,
K_(a_2)=1.0xx10^-8=(x(0.00032+x))/(0.00032-x)
x\cong((1.0xx10^-8)(\cancel(0.00032)))/(\cancel(0.00032))
x\rArr1.0xx10^-8 M - table 3 with
K_(a_3) calculatesx=0 , so negligible.Finding pH:
[H^+]_(\text(total))=0.0032+0.00032001=0.00064001 M
which is6.4xx10^-4 M of[H^+]
pH is-log[H^+]=-log(6.4xx10^-4)\approx3.19