How do you solve and graph m-2< -8 or m/8>1?

1 Answer
Jun 29, 2018

m<-6 or m>8 or in interval notation m in (-oo,-6) uu (8,+oo)

Explanation:

m-2<-8 or m/8>1

First consider: m-2<-8

Add 2 to both sides.

-> m<-8+2

m<-6

Next consider: m/8>1

Multiply both sides by 8.

-> m>8

Hence our compound inequality simplifies to: m<-6 or m>8
or in interval notation m in (-oo,-6) uu (8,+oo)

We can represent this graphically on a 2D plane where m is the horizontal axis, as below.

graph{(x+6)(-x+8)<0 [-14.24, 14.23, -7.12, 7.11]}

So, m may take all values on the horizontal axis in the shaded areas.