g(x)=(x-1)/(x+1), x=(z+1)/(1-z) g(x)=x1x+1,x=z+11z.Then(dg)/dz=dgdz=?(Express it in z)

g(x)=(x-1)/(x+1), x=(z+1)/(1-z) g(x)=x1x+1,x=z+11z.Then(dg)/dz=dgdz=?(Express it in z)

1 Answer
Jun 29, 2018

\frac{dg}{dz}=1dgdz=1

Explanation:

\frac{dg}{dz} = \frac{dg}{dx}\cdot\frac{dx}{dz}dgdz=dgdxdxdz

By quotient rule:

\frac{dg}{dx}=\frac{(x+1)\cdot 1-(x-1)\cdot 1}{(x+1)^2}=\frac{2}{(x+1)^2}dgdx=(x+1)1(x1)1(x+1)2=2(x+1)2

\frac{dx}{dz}=\frac{(1-z)\cdot 1 - (z+1)\cdot (-1)}{(1-z)^2}=\frac{2}{(1-z)^2}dxdz=(1z)1(z+1)(1)(1z)2=2(1z)2

Therefore,

\frac{dg}{dz} = \frac{2\cdot 2}{(x+1)^2\cdot(1-z)^2}=\frac{4}{(\frac{z+1}{1-z} + 1)^2\cdot(1-z)^2}dgdz=22(x+1)2(1z)2=4(z+11z+1)2(1z)2

This can be simplified:

\frac{4}{(\frac{z+1}{1-z} + \frac{1-z}{1-z})^2\cdot(1-z)^2}=\frac{4}{(\frac{2}{1-z})^2\cdot(1-z)^2}=\frac{4}{4}=14(z+11z+1z1z)2(1z)2=4(21z)2(1z)2=44=1