Given the nth term for each sequence below, how to find the sum of the first 20 terms? (1) a_n=4n+1an=4n+1 (2) a_n=n+1/2an=n+12

1 Answer
Jun 29, 2018

(1) 860 (2) 220

Explanation:

In both examples we will apply linearity over the sum and use:

sum_(i=1)^n i = (n(n+1))/2ni=1i=n(n+1)2 and sum_(i=1)^n 1 = nni=11=n

(1) a_n= 4n+1an=4n+1

To find the sum of the first 20 terms:

sum_(i=1)^20 (4i+1) = 4sum_(i=1)^20 i+ sum_(i=1)^20 120i=1(4i+1)=420i=1i+20i=11

= 4{{20(20+1))/2} + 20=4{20(20+1)2}+20

= 4xx210 +20 = 860=4×210+20=860

(2) a_n= n+1/2an=n+12

To find the sum of the first 20 terms:

sum_(i=1)^20 (i+1/2) = sum_(i=1)^20 i+ 1/2sum_(i=1)^20 120i=1(i+12)=20i=1i+1220i=11

= (20(20+1))/2 + 1/2xx20=20(20+1)2+12×20

= 210 + 10 = 220=210+10=220