How do you verify #(cot theta - tan theta)/(cot theta + tan theta) = cos 2 theta#?

2 Answers

Taking LHS as follows

#LHS=\frac{\cot\theta-\tan\theta}{\cot\theta+\tan\theta}#

#=\frac{\cos\theta/\sin\theta-\sin\theta/\cos\theta}{\cos\theta/\sin\theta+\sin\theta/\cos\theta}#

#=\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta+\sin^2\theta}#

#=\frac{\cos^2\theta-(1-\cos^2\theta)}{1}#

#=\cos^2\theta-1+\cos^2\theta#

#=2\cos^2\theta-1#

#=\cos2\theta#

#=RHS#

proved.

Jun 30, 2018

Shown below

Explanation:

Let #t = tan(a/2) #

#sina = (2t)/(1+t^2) #

#cosa = (1-t^2)/(1+t^2) #

#=> tan a = (2t)/(1-t^2) #

#LHS: #

# = ( (1-t^2)/(2t) - (2t)/(1-t^2) ) / ((1-t^2)/(2t) + (2t)/(1-t^2))#

# = (1-t^2)/(1+t^2) #

# = cos a #

# = RHS #

#=> (cot(a/2) - tan(a/2) ) / (cot(a/2) + tan(a/2) ) = cos a #

let #theta = a/2 => 2theta = a #

Hence #(cot(theta) - tan(theta) ) / (cot(theta) + tan(theta) ) = cos 2theta #

This idea of using # t= tan(theta/2) # can be used for a great amount of problems similar to this one, and even for integrals like #int 1/(1+sintheta) d theta # where its called weirstrass substitution