What is #sum_(n=1)^(4) [100(-4)^(n-1)]#?
2 Answers
May 22, 2018
The answer is
Explanation:
This is a geometric progression
The sum is
Jul 1, 2018
Here is an alternative, simple approach. Since there are only 4 terms in the sum, just expand it.
#sum_(n=1)^(4) [100(-4)^(n-1)] = ?#
There is no
#= 100 sum_(n=1)^(4) (-4)^(n-1)#
Now expand:
#= 100[(-4)^(1-1) + (-4)^(2-1) + (-4)^(3-1) + (-4)^(4-1)]#
#= 100[(-4)^(0) + (-4)^(1) + (-4)^(2) + (-4)^(3)]#
#= 100(1 - 4 + 16 - 64)#
#= 100(-51)#
#= color(blue)(-5100)#