What is sum_(n=1)^(4) [100(-4)^(n-1)]?

enter image source here

2 Answers
May 22, 2018

The answer is =-5100

Explanation:

This is a geometric progression

r=-4

a_n=100((-4)^(n-1))

a_(n+1)=100((-4)^(n+1-1))

a_1=100

The sum is

S=a_1(1-r^(n+1))/(1-r)

=100(1-(-4)^4)/(1-(-4))

=100/5(1-256)

=-5100

Jul 1, 2018

Here is an alternative, simple approach. Since there are only 4 terms in the sum, just expand it.


sum_(n=1)^(4) [100(-4)^(n-1)] = ?

There is no n dependence in 100, so factor it out:

= 100 sum_(n=1)^(4) (-4)^(n-1)

Now expand:

= 100[(-4)^(1-1) + (-4)^(2-1) + (-4)^(3-1) + (-4)^(4-1)]

= 100[(-4)^(0) + (-4)^(1) + (-4)^(2) + (-4)^(3)]

= 100(1 - 4 + 16 - 64)

= 100(-51)

= color(blue)(-5100)