The area of a triangle is 2x^2-11x+15. If the triangle's base is 2x-5, what is its height?

2 Answers

"height" = color(red)(2)(x - 3)

Explanation:

Recall;

Area of triangle = 1/2 "base" xx "height"

Area of triangle = 2x^2 - 11x + 15

base =2x - 5

Plugging in the given;

2x^2 - 11x + 15 = 1/2 (2x - 5) xx "height"

2x^2 - 11x + 15 = (2x - 5)/2 xx "height"

(2x^2 - 11x + 15)/1 = (2x - 5)/2 xx "height"

2(2x^2 - 11x + 15) = (2x - 5) xx "height"

4x^2 - 22x + 30 = (2x - 5) xx "height"

(4x^2 - 22x + 30)/(2x - 5) = "height"

Resolving the quadratic equation;

(4x^2 - 22x + 30)

Simplifying;

(4x^2)/2 - (22x)/2 + 30/2

2x^2 - 11x + 15

Using Factorization Method..

6 and 5 are factors..

2x^2 - 6x - 5x + 15

Grouping;

(2x^2 - 6x) (- 5x + 15)

2x(x - 3) - 5(x - 3)

(x - 3) (2x - 5)

Therefore;

(4x^2 - 22x + 30)/(2x - 5) = "height"

color(white)(xxxxx)darr

(color(red)(2)(x - 3) (2x - 5))/(2x - 5) = "height"

(color(red)(2)(x - 3) cancel(2x - 5))/cancel(2x - 5) = "height"

color(red)(2)(x - 3) = "height"

Jul 2, 2018

color(maroon)("Height of the triangle " h = 2 (x - 3)

Explanation:

"Area of triangle = (1/2) * (base * height)"

A_t = (1/2) b h

"Given : " A_t = 2x^2 - 11x + 15, b = (2x - 5)

h = ((2 * A_t) / b)

h = (2 * (2x^2 - 11x + 15)) / (2x - 5)

h = (2 * cancel(2x - 5) * (x - 3)) / cancel(2x - 5)

h = 2 * (x - 3)