Recall;
Area of triangle = 1/2 "base" xx "height"
Area of triangle = 2x^2 - 11x + 15
base =2x - 5
Plugging in the given;
2x^2 - 11x + 15 = 1/2 (2x - 5) xx "height"
2x^2 - 11x + 15 = (2x - 5)/2 xx "height"
(2x^2 - 11x + 15)/1 = (2x - 5)/2 xx "height"
2(2x^2 - 11x + 15) = (2x - 5) xx "height"
4x^2 - 22x + 30 = (2x - 5) xx "height"
(4x^2 - 22x + 30)/(2x - 5) = "height"
Resolving the quadratic equation;
(4x^2 - 22x + 30)
Simplifying;
(4x^2)/2 - (22x)/2 + 30/2
2x^2 - 11x + 15
Using Factorization Method..
6 and 5 are factors..
2x^2 - 6x - 5x + 15
Grouping;
(2x^2 - 6x) (- 5x + 15)
2x(x - 3) - 5(x - 3)
(x - 3) (2x - 5)
Therefore;
(4x^2 - 22x + 30)/(2x - 5) = "height"
color(white)(xxxxx)darr
(color(red)(2)(x - 3) (2x - 5))/(2x - 5) = "height"
(color(red)(2)(x - 3) cancel(2x - 5))/cancel(2x - 5) = "height"
color(red)(2)(x - 3) = "height"