Find a continuous solution of the IVP dy/dt+y=g(t),y(0)=0 where g(t)=[2,0≤t≤1 0,t>1.?

1 Answer
Jul 3, 2018

y={(2 ( 1 - e^(-t)),0≤t≤1),( 2 (e - 1)e^(-t),t>1):}

Explanation:

Question is:

dy/dt+y=g(t),y(0)=0 qquad g(t)={(2,0≤t≤1),( 0,t>1):}

  • For t in [0,1]

y' + y = 2

Applying an integrating factor: exp(int dt)

e^t(y' + y) bb(= (y e^t)^' )= 2 e^t

y e^t = 2 e^t + C

y = 2 + C e^(-t)

y(0) = 0 = 2 + C

:. y_1 = 2 ( 1 - e^(-t))

  • For t gt 1

y' + y = 0

Separating for integration:

dy/y = - dt qquad => ln y = -t + D

:. y_2 = De^(-t)

For continuity:

y_1(1) = y_2(1) = 2

implies D = 2 (e - 1)

:. y={(2 ( 1 - e^(-t)),0≤t≤1),( 2 (e - 1)e^(-t),t>1):}