How to find the cube roots of sqrt(2) + isqrt(2)2+i2 ? Exhibit them as vertices of certain regular polygon, and identify the principal root

2 Answers
Jul 4, 2018

z^3=sqrt2+isqrt2z3=2+i2: z=2e^(ipi/12),2e^(i(9pi)/12),2e^(i(17pi)/12)z=2eiπ12,2ei9π12,2ei17π12. Principal root is 2e^(ipi/12)2eiπ12 and roots are vertices of triangle.

Explanation:

To solve z^n=re^(itheta)zn=reiθ, we have z=re^(i(theta/n+(2kpi)/n)), k={0,1,2,...,n-1}.
Write sqrt2+isqrt2 in the form 2e^(ipi/4). To find the principal root, raise to the power of 1/3 to get 2e^(ipi/12). To find the other two, add multiples of 2pi/3 to the exponent: 2e^(i(pi/12+(2pi)/3)) and 2e^(i(pi/12+(4pi)/3)). In general, the nth roots of a complex number are the roots of a regular n-gon.

Jul 4, 2018

Please see the solutions below

Explanation:

The complex number is

z=a+ib

Here,

z=sqrt2+isqrt2

Transform this to the polar form

z=|z|(costheta+isintheta)

{(|z|=sqrt(a^2+b^2)),(costheta=a/(|z|)),(sintheta=b/(|b|)):}

Here,

|z|=sqrt((sqrt2)^2+(sqrt2)^2)=sqrt4=2

Therefore,

z=2(sqrt2/2+isqrt2/2)

z=2(cos(pi/4+2kpi)+isin(pi/4+2kpi)), k in ZZ

The cube root is

z^(1/3)=(2(cos(pi/4+2kpi)+isin(pi/4+2kpi)))^(1/3)

=2^(1/3)(cos(1/3(pi/4+2kpi))+isin((1/3(pi/4+2kpi)))

=2^(1/3)(cos(pi/12+2/3kpi)+isin(pi/12+2/3kpi))

When

k=0, =>, z_1=2^(1/3)(cos(pi/12)+isin(pi/12))

k=1, =>, z_1=2^(1/3)(cos(3/4pi)+isin(3/4pi))

k=2, =>, z_1=2^(1/3)(cos(17/12pi)+isin(17/12pi))