From the crests of #y = sin x, 1 = sin (pi/2) = sin ((5/2)pi) = sin ((9/2)pi) = ...# How do you evaluate #sin^(-1) sin (pi/2), sin^(-1) sin ((5/2)pi), sin^(-1) sin ((9/2)pi), ...?#

1 Answer
Jul 6, 2018

#sin^(-1)sinx=x#

Explanation:

Arcsine of sine of a quantity is the same quantity back again. So #sin^(-1)sin(pi/2)=pi/2#, etc.

Note that the notation #sin^(-1)x# is used to mean the inverse function of sine (i.e. arcsine).