Integrate int xe^(2x)dx ?

2 Answers
Jul 10, 2018

This will require a single application of integration by parts.

We let dv = e^(2x)dx and u = x. Then v= 1/2e^(2x) and du = dx.

By integration by parts we have

int u dv = uv - int v du

int xe^(2x) dx = 1/2xe^(2x) - int 1/2e^(2x) dx

int xe^(2x) dx = 1/2xe^(2x) - 1/4e^(2x) + C

Hopefully this helps!

Jul 10, 2018

The answer is =(2x-1)e^(2x)/4+C

Explanation:

Perform an integration by parts

intuv'dx=uv-intu'vdx

Here,

The integral is

I=intxe^(2x)dx

u=x, =>, u'=1

v'=e^(2x), =>, v=e^(2x)/2

Therefore, the integral is

I=(xe^(2x))/2-1/2inte^(2x)dx

=(xe^(2x))/2-1/4e^(2x)+C

=(2x-1)e^(2x)/4+C