What is the arc length of teh curve given by r(t)=(2t , 2e^(-t) , e^(t) )r(t)=(2t,2et,et) in the interval t in [0,3]t[0,3]?

1 Answer
Jul 10, 2018

1+e^3-2e^-3#

Explanation:

The parametric equation for the curve is

x(t) = 2t qquadimplies dx = 2dt
y(t) = 2e^-t implies dy = -2e^-t dt
z(t) = e^t \ quad implies dz = e^t dt

Thus

ds = sqrt{dx^2+dy^2+dz^2}
qquad = sqrt{4+4e^{-2t}+e^{2t}}dt
qquad = sqrt{(e^t+2e^-t)^2}dt
qquad = (e^t+2e^-t)dt

Hence, the required length is

int ds = int_0^3 (e^t+2e^-t)dt
qquadquad =[e^t-2e^-t]_0^3
quadqquad = (e^3-2e^-3)-(e^0-2e^0)
qquadquad =1+e^3-2e^-3