What is the arc length of teh curve given by #r(t)=(2t , 2e^(-t) , e^(t) )# in the interval #t in [0,3]#?

1 Answer
Jul 10, 2018

1+e^3-2e^-3#

Explanation:

The parametric equation for the curve is

#x(t) = 2t qquadimplies dx = 2dt#
#y(t) = 2e^-t implies dy = -2e^-t dt #
#z(t) = e^t \ quad implies dz = e^t dt #

Thus

#ds = sqrt{dx^2+dy^2+dz^2}#
#qquad = sqrt{4+4e^{-2t}+e^{2t}}dt#
#qquad = sqrt{(e^t+2e^-t)^2}dt#
#qquad = (e^t+2e^-t)dt#

Hence, the required length is

#int ds = int_0^3 (e^t+2e^-t)dt#
#qquadquad =[e^t-2e^-t]_0^3#
#quadqquad = (e^3-2e^-3)-(e^0-2e^0)#
#qquadquad =1+e^3-2e^-3#