What is the integral of int (1/(x^2+x+1)) dx?

2 Answers
Jul 12, 2018

(2sqrt(3))/3 arctan( (2x+1)/sqrt(3) ) + c

Explanation:

x^2 + x+1 = (x+1/2)^2 + 3/4

=> int 1/((x+1/2)^2 +3/4) dx

let 3/4 u^2 = (x+1/2)^2

=> sqrt3 /2 u = x+1/2

=> sqrt(3)/2 du = dx

=> sqrt(3)/2 int 1/(3/4 u^2 + 3/4) du

=> (2sqrt(3))/3 int 1/(u^2+1) du

=> (2sqrt(3))/3 arctan(u) + c

= (2sqrt(3))/3 arctan( (2x+1)/sqrt(3) ) + "constant"

Jul 12, 2018

2/sqrt3*arctan{(2x+1)/sqrt3}+C.

Explanation:

"Prerequsite :"int1/{(x+a)^2+b^2}dx=1/b*arctan((x+a)/b)+c.

int1/(x^2+x+1)dx,

=int1/{(x^2+x+1/4)+3/4}dx..............."[completing square]",

=int1/{(x+1/2)^2+(sqrt3/2)^2}dx,

=1/(sqrt3/2)*arctan{(x+1/2)/(sqrt3/2)},

=2/sqrt3*arctan{(2x+1)/sqrt3}+C.