Solve #(y + 2/y)^2 + 3y + 6/y = 4#?

2 Answers
Jul 13, 2018

#y = -2 +-sqrt(2), " "1/2 +- (sqrt(7)i)/2#

Explanation:

Given: #(y + 2/y)^2 + 3y +6/y = 4#

This is one way to solve. Use #(a+b)^2 = a^2+2ab+ b^2#

#y^2 + 2cancel(y)(2/cancel(y))+4/y_2 + 3y +6/y = 4#

#y^2 + 4+4/y_2 + 3y +6/y = 4#

Multiply both sides by #y^2# to eliminate the fractions:

#y^4 + 4y^2 + 4 + 3y^3 +6y = 4y^2#

Add like terms and put in descending order:

#y^4 + 3y^3 + 6y + 4 = 0#

Factor:

Can't use group factoring.

Use #(y^2 +ay + b)(y^2 + cy + d) = y^4 + 3y^3 + 6y + 4 #

#y^4 + (a+c)y^3 + (d+ac+b)y^2 + (ad + bc)y + bd = y^4 + 3y^3 + 6y + 4 #

Solve the system:

#a + c = 3" "# the coefficient of the #y^3# term
#d + ac + b = 0" "# because there is no #y^2# term
#ad + bc = 6" "# the coefficient of the #y# term
#bd = 4#

Start with the possibilities for #bd = (2, 2), (4, 1), (1, 4)#

If #b = 2, d = 2#, then from the 2nd equation: #ac = -4#

Try #a = -1, c = 4" "# works for all equations!

Factored: #" "(y^2 - y + 2)(y^2 + 4y + 2) = 0#

Solve each trinomial either by completing the square or using the quadratic formula:

#y^2 - y + 2 = 0; " "y^2 + 4y + 2 = 0#

#y = (1+- sqrt(1-4(1)(2)))/2; " " y = (-4+- sqrt(16-4(1)(2)))/2#

#y = (1+- sqrt(7)i)/2; " " y = -2 +-sqrt(8)/2 = -2 +- sqrt(2)#

Jul 13, 2018

#y_1=(1+isqrt7)/2#, #y_2=(1-isqrt7)/2#, #y_3=-2+sqrt2# and #y_4=-2-sqrt2#

Explanation:

#(y+2/y)^2+3y+6/y=4#

#(y+2/y)^2+3*(y+2/y)=4#

After setting #x=y+2/y#, this equation became

#x^2+3x=4#

#x^2+3x-4=0#

#(x+4)*(x-1)=0#, so #x_1=1# and #x_2=-4#

#a)# For #x=1#,

#y+2/y=1#

#y^2+2=y#

#y^2-y+2=0#, consequently #y_1=(1+isqrt7)/2# and #y_2=(1-isqrt7)/2#

#b)# For #x=-4#,

#y+2/y=-4#

#y^2+2=-4y#

#y^2+4y+2=0#, consequently #y_3=-2+sqrt2# and #y_4=-2-sqrt2#