How do you find the inverse of A=A=((-3, -1), (-7, 8))?

2 Answers
Mar 12, 2018

A^(-1)=((-8/31, -1/31), (-7/31, 3/31))

Explanation:

A=((-3, -1), (-7, 8))

Cof(A)=((8, 7), (1, -3))

Adj(A)=((8, 1), (7, -3))

Det(A)=(-3)*8-(-1)(-7)=-31

Thus, A^(-1)=(Adj(A))/(Det(A))

A^(-1)=((-8/31, -1/31), (-7/31, 3/31))

Jul 14, 2018

Answer: [(-8/31,-1/31),(-7/31,3/31)]

Explanation:

An easy way to find the inverse of a 2x2 square matrix is to apply the following formula*:
Let A=[(a,b),(c,d)], then
A^(-1)=1/(det(A))[(d,-b),(-c,a)]

For this problem, we have
A=[(-3,-1),(-7,8)], so a=-3,b=-1,c=-7,d=8

We can find the determinant:
det(A)=ad-bc=-24-7=-31

Plugging in our values, we have:
A^(-1)=1/(-31)[(8,1),(7,-3)]=[(-8/31,-1/31),(-7/31,3/31)], which is our answer

*Note: This formula only works for 2x2 matrices and does not work for larger matrices