How do you solve the system of equations #-3x + 2y = 19# ad #x - 6y = - 1#?

2 Answers
Jul 14, 2018

#(x,y)to(-7,-1)#

Explanation:

#-3x+2y=19to(1)#

#x-6y=-1to(2)#

#"from equation "(2)color(white)(x)x=6y-1to(3)#

#"substitute "x=6y-1" in equation "(1)#

#-3(6y-1)+2y=19#

#-18y+3+2y=19#

#-16y+3=19#

#"subtract 3 from both sides"#

#-16y=16#

#"divide both sides by "-16#

#y=16/(-16)=-1#

#"substitute "y=-1" into equation "(3)#

#x=-6-1=-7#

#"point of intersection "=(-7,-1)#
graph{(y-3/2x-19/2)(y-1/6x-1/6)=0 [-10, 10, -5, 5]}

Jul 14, 2018

#x=-7,y=-1#

Explanation:

Multiplying the second equation by #3# and adding to the first we get

#-16y=16# so #y=-1#

substituing this in the second equation
#x+6=-1#
so
#x=-7#