How do you Factor completely 2x^3+5x^2-37x-602x3+5x237x60?

2 Answers
Jul 15, 2018

(x-4)(x+5)(2x+3)(x4)(x+5)(2x+3)

Explanation:

Note that x=4x=4 is a solution
2*4^3+5*4^2-37*4-60=128+80-148-60=0243+54237460=128+8014860=0
and

x=-5x=5

-2*5^3+5*25+37*5-60=-250+125+185-60=0253+525+37560=250+125+18560=0
so we can

2*x^3+5*x^2-37*x-602x3+5x237x60
divide by (x-4)(x+5)(x4)(x+5)
and we get 2x+32x+3
so the completely factorization is given by

(x-4)(x+5)(2x+3)(x4)(x+5)(2x+3)

Jul 15, 2018

(x-4)(x+5)(2x+3)(x4)(x+5)(2x+3)

Explanation:

2x^3+5x^2-37x-602x3+5x237x60

=2x^3-8x^2+13x^2-52x+15x-602x38x2+13x252x+15x60

=2x^2*(x-4)+13x*(x-4)+15*(x-4)2x2(x4)+13x(x4)+15(x4)

=(x-4)*(2x^2+13x+15)(x4)(2x2+13x+15)

=(x-4)*(2x^2+10x+3x+15)(x4)(2x2+10x+3x+15)

=(x-4)((2x*(x+5)+3*(x+5))(x4)((2x(x+5)+3(x+5))

=(x-4)(x+5)(2x+3)(x4)(x+5)(2x+3)