Cos^2A+cos^2B-sin^2C=-2cosA.cosB.sinC?

2 Answers
Jul 15, 2018

If A+B+C=pi then

LHS=cos^2A+cos^2B-sin^2C

=1/2[2cos^2A+2cos^2B-2sin^2C]

=1/2[1+cos2A+1+cos2B-(1-cos2C)]

=1/2[1+cos2A+1+cos2B-1+cos2C]

=1/2[1+cos2A+cos2B+cos2C]

=1/2[1+2cos((2A+2B)/2)cos((2A-2B)/2)+cos2(pi-(A+B))]

=1/2[1+2cos(A+B)cos(A-B)+cos(2pi-2(A+B))]

=1/2[1+2cos(A+B)cos(A-B)+2cos^2(A+B)-1]

=1/2[2cos(A+B){cos(A-B)+cos(A+B)}]

=cos(pi-C)*2cosAcosB=-2cosAcosBcosC

Jul 15, 2018

Below.

Explanation:

Let we take the values of A+B+C=pi

C= pi-(A+B)----------(i)

Multiplying LHS by 1/2 we get,

1/2(2 cos^2A + 2 cos^2B - 2 sin^2 C)

=> 1/2(1+ cos 2A+1+cos 2B - {1-cos2C})

=> 1/2( 1+ cos 2A+1+cos 2B - 1+ cos2C)

=> 1/2(1+ cos 2A+cos 2B+cos2C)

Using the formula of cos{2A+2B} we get,

=> 1/2 (1+ 2cos[{2A+2B}/2] cos [{2A-2B}/2]+ cos2 C)

Putting the value of equation (i) in cos 2C we get,

=> 1/2 (1+ 2cos[{2A+2B}/2] cos [{2A-2B}/2]+ cos2[pi-{A+B}])

Resolving this equation further,

=> 1/2( 1+ 2cos[A+B]cos[A-B]+2cos^2(A+B)-1)

=> (cos[pi-C]*2cosAcosB)

This gives the final output as,

=> -2cosA*cosB*cosC