How do you graph the parabola f(x)= -(x+4)^2 + 9f(x)=(x+4)2+9 using vertex, intercepts and additional points?

1 Answer
Jul 16, 2018

Vertex (-4,9)(4,9)
y-intercept (0,-7)(0,7)
x-intercepts (-1,0); (-7,0)(1,0);(7,0)

Explanation:

Given -

f(x)=-(x+4)^2+9f(x)=(x+4)2+9

y=-(x+4)^2+9y=(x+4)2+9

Vertex (-4,9)(4,9)
At x=0; y=-(0+4)^2+9=-16+9=-7x=0;y=(0+4)2+9=16+9=7

y-intercept (0,-7)(0,7)

x intercepts
At y=0; -(x+4)^2+9=0y=0;(x+4)2+9=0

-(x+4)^2=-9(x+4)2=9

Multiplying both sides by -11

(x+4)^2=9(x+4)2=9

x+4=+-sqrt9=+-3x+4=±9=±3

x=3-4=-1x=34=1

x=-3-4=-7x=34=7

x-intercepts (-1,0); (-7,0)(1,0);(7,0)

enter image source here