Find the horizontal asymptote of the graph of y=-4x^6+6x+3/8x^6+6x+5?

1 Answer
Jul 16, 2018

#color(blue)(y=-1/2)#

Explanation:

I am assuming the function is:

#y=(-4x^6+6x+3)/(8x^6+6x+5)#

Divide numerator and denominator by #x^6#

#y=((-4x^6)/x^6+(6x)/x^6+3/x^6)/((8x^6)/x^6+(6x)/x^6+5/x^6)#

Cancelling:

#y=(-4+(6)/x^5+3/x^6)/(8+(6)/x^5+5/x^6)#

Now we observe what happens as #x->+-oo#

#x->oo# ,#\ \ \ \ \ \(-4+(6)/x^5+3/x^6)/(8+(6)/x^5+5/x^6)->(-4+0+0)/(8+0+0)=-1/2#

#x->-oo# ,#\ \ \ \ \ \(-4+(6)/x^5+3/x^6)/(8+(6)/x^5+5/x^6)->(-4+0+0)/(8+0+0)=-1/2#

We can see that as #x# tends to #+-# infinity the function tends to #-1/2#

The line #y=-1/2# is therefore a horizontal asymptote.

The graph of the function verifies this:

graph{y=(-4x^6+6x+3)/(8x^6+6x+5) [-10, 10, -5, 5]}