Prove sec x - tan x sin x = (1/sec x) ?

2 Answers
Jul 17, 2018

See my proof below

Explanation:

We will simplify the left-hand side of your equation:
sec(x)-tan(x)*sec(x)=

1/cos(x)-sin^2(x)/cos(x)=(1-sin^2(x))/cos(x)

(since tan(x)*sin(x)=sin(x)/cos(x)*sin(x)=sin^2(x)/cos(x))

further

(1-sin^2(x))/cos(x)=cos^2(x)/cos(x)=cos(x)=1/sec(x)

(since 1-sin^2(x)=cos^2(x))

Jul 17, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)cosx=1/secxhArrsecx=1/cosx

•color(white)(x)tanx=sinx/cosx

•color(white)(x)cos^2x+sin^2x=1

"consider the left side"

1/cosx-sinx/cosx xxsinx

=1/cosx-sin^2x/cosx

=(1-sin^2x)/cosx

=cos^2x/cosx

=cosx=1/secx=" right side "rArr" verified"