2kg disc of radius 1m moment of inertia 0.5kgm^2 is released from top of 2m long incline having inclination 30degree. Find it’s velocity just before reaching the ground .??

2 Answers
Jul 18, 2018

Given

Mass of the disc #M=2kg#

Radius of the disc #r=1m#

Length of incline #l=2m#

Moment inertia of the disc #I=0.5kgm^2#

Angle of inclination of the incline #theta=30^@#
When the disc reaches at the ground let the linear velocity of the disc be #v# and angular velocity be #omega#. At the ground whole of it's gravitational PE will be transfromed into rotational and translational KE.

So

#1/2Iomega^2+1/2Mv^2=Mglsintheta#

#=>1/2Iv^2/r^2+1/2Mv^2=Mglsintheta#

#=>Iv^2/r^2+Mv^2=2Mglsintheta#

#=>v^2(I/r^2+M)=2Mglsintheta#

#=>v^2(0.5/1^2+2)=2xx2xx9.8xx2xxsin30^@#

#=>v^2xx5/2=2xx2xx9.8xx2xx1/2#

#=>v^2=2xx2xx9.8xx2xx1/2xx2/5#

#=v=sqrt(9.8xx1.6)=2.8*sqrt2m"/"s#

Jul 18, 2018

The speed is #=3.61ms^-1#

Explanation:

Another approach is to calculate the acceleration of the disc down the incline.

Let the coefficient if friction detween the disc and the incline be #=mu#

Then,

The acceleration down the plane is

#mgsintheta-mumgcostheta=ma#

#gsintheta-mugcostheta=a#......................#(1)#

Taking moments about the center of the disc

#tau=Ialpha#

#alpha=a/r#

#rmumgcostheta=1/2mr^2*a/r#

#mu=a/(2gcostheta)#............................#(2)#

Plugging this value in equation #(1)#

#gsintheta-a/(2gcostheta)gcostheta=a##

Therefore,

#3/2a=gsintheta#

The acceleration is #a=2/3gsintheta#

The distance is #s=2m#

Apply the equation of motion

#v^2=u^2+2as#

#v^2=0+2as#

#v=sqrt(2*2/3gsintheta*s)#

#v=sqrt(4/3*9.8*sin30*2)=sqrt(4*9.8/3)=3.61ms^-1#

P.S There is a problem, the moment of inertia of the disc about the center is #I=1/2mr^2=1/2*2*1^2=1kgm^2# and not #0.5kgm^2#