How do you find the derivative of(x^5+x^6-8)^3?

1 Answer
Jul 18, 2018

Below

Explanation:

y=(x^5+x^6-8)^3y=(x5+x68)3

Let u=x^5+x^6-8u=x5+x68
then (du)/(dx)=5x^4+6x^5dudx=5x4+6x5

Since u=x^5+x^6-8u=x5+x68, then
y=u^3y=u3
(dy)/(du)=3u^2dydu=3u2

Therefore,
(dy)/(dx)=(dy)/(du)times(du)/(dx)dydx=dydu×dudx
=3u^2times(5x^4+6x^5)3u2×(5x4+6x5)
=3(x^5+x^6-8)^2(5x^4+6x^5)3(x5+x68)2(5x4+6x5)