Is f(x)= cot(-x+(5pi)/6) f(x)=cot(x+5π6) increasing or decreasing at x=pi/4 x=π4?

2 Answers

Increasing

Explanation:

Given function:

f(x)=\cot(-x+{5\pi}/6)f(x)=cot(x+5π6)

Differentiating above equation w.r.t. xx as follows

d/dxf(x)=d/dx\cot(-x+{5\pi}/6)ddxf(x)=ddxcot(x+5π6)

f'(x)=-\cosec^2(-x+{5\pi}/6)d/dx(-x+{5\pi}/6)

f'(x)=-\cosec^2(-x+{5\pi}/6)(-1)

f'(x)=\cosec^2(-x+{5\pi}/6)

setting x=\pi/4 in above equation, we get

f'(\pi/4)=\cosec^2(-\pi/4+{5\pi}/6)

=\cosec^2({7\pi}/12)

=\cosec^2 105^\circ

=(\frac{2\sqrt2}{\sqrt3+1})^2

=4(2-\sqrt3)>0

Since, f'(\pi/4)>0 hence the function is increasing at x=\pi/4

Jul 18, 2018

since we get f'(pi/4)=2(sqrt(3)-1)^2>0 so is f(x) increasing for this Point.

Explanation:

At first we not that

cot(-x+5pi/6)=-cot(x+pi/6)
so

-cot(x+pi/6)=csc^2(x+pi/6)
and

f'(pi/4)=2(sqrt(3)-1)^2
Note that pi/4+pi/6=(3pi+2pi)/12=(5pi)/12