How do you solve Ln (x-1) + ln (x+2) = 1 ?

2 Answers
Jul 21, 2018

color(blue)(x=(-1+sqrt(4e+9))/2~~1.7290)

Explanation:

Using the logarithmic property:

lna+lnb=lnab

ln(x-1)(x+2)=1

Using the antilogarithm:

e^(ln(x-1)(x+2))=e^1

(x-1)(x+2)=e

Expanding LHS

x^2+x-2-e=0

Using quadratic formula:

x=(-(1)+-sqrt((1)^2-4(1)(-2-e)))/2

x=(-1+sqrt(4e+9))/2~~1.7290

x=(-1-sqrt(4e+9))/2~~-2.7290

Checking solutions with original equation:

ln(1.7290-1)+ln(1.7290+2)=1.000058554

ln(-2.7290-1)+ln(-2.7290+2) \ \ color(red)(X)

This is undefined for real numbers.

lnx is only defined for real numbers if x>0

x=\frac{-1+\sqrt{9+4e}}{2}=1.72896

Explanation:

\ln(x-1)+\ln(x+2)=1\ quad (\forall \ \ x>1)

\ln((x-1)(x+2))=1

\ln(x^2+x-2)=\ln e

Comparing the numbers on same base on both the sides,

x^2+x-2=e

x^2+x-(2+e)=0

Solving above quadratic equation as follows

x=\frac{-1\pm\sqrt{1^2-4(1)(-(2+e))}}{2(1)}

x=\frac{-1\pm\sqrt{9+4e}}{2}

But, x>1 hence

x=\frac{-1+\sqrt{9+4e}}{2}

=1.72896