How do you use the chain rule to differentiate y=sqrt(1/(x+1))?

2 Answers

dy/dx=-1/{2(x+1)^{3/2}}

Explanation:

Given function:

y=\sqrt{1/{x+1}}

y=1/{(x+1)^{1/2}}

y=(x+1)^{-1/2}

Differentiating above function w.r.t. x using chain rule as follows

dy/dx=d/dx((x+1)^{-1/2})

=-1/2(x+1)^{-1/2-1}d/dx(x+1)

=-1/2(x+1)^{-3/2}(1)

=-1/{2(x+1)^{3/2}}

Jul 22, 2018

dy/dx=-1/{2(x+1)sqrt(x+1)}=-1/{2(x+1)^(3/2)}=-1/{2(sqrt(x+1))^3}.

Explanation:

y=sqrt{1/(x+1)}=1/sqrt(x+1).

Let, (x+1)=u, sqrtu=sqrt(x+1)=v.

Thus, y=1/v, v=sqrtu, u=x+1.

Thus, y is a function of v, v" of "u, &, u" of "x.

Therefore, by the Chain Rule,

dy/dx=dy/(dv)(dv)/(du)(du)/dx..........(ast).

Now, dy/(dv)=d/(dv){1/v}=-1/v^2......(ast^1),

(dv)/(du)=d/(du){sqrtu}=1/(2sqrtu)........(ast^2), and,

(du)/dx=d/dx{x+1}=1................................(ast^3).

We combine (ast^1),(ast^2),(ast^3) and (ast), to get,

dy/dx=(-1/v^2)(1/(2sqrtu))(1),

=(-1/u)(1/(2sqrt(x+1))).

:.dy/dx=-1/{2(x+1)sqrt(x+1)}=-1/{2(x+1)^(3/2)}=-1/{2(sqrt(x+1))^3}.