Calculate the change in pressure required to change the freezing point of water at 1°C and 0°C if heat of fusion of ice is 333.5 j/cm^3 and density of water is 0.998g/cm^3 and of ice is 0.9168g/cm^3?

1 Answer
Jul 23, 2018

I'm getting -"7.53 atm" to cause DeltaT_"fus" = +"1 K" from 0^@ "C" to 1^@ "C", indicating the slope is NEGATIVE.


I assume you mean, calculate the change in pressure associated with a change in the freezing point of water from 0^@ "C" to 1^@ "C".

I will forgo the derivation and present the Clapeyron Equation:

(DeltaP)/(DeltaT) = (DeltabarS_(tr))/(DeltabarV_(tr)) = (DeltabarH_(tr))/(T_(tr)DeltabarV_"tr")

where:

  • P is pressure in "atm"
  • T_"tr" is the normal phase transition temperature in "K".
  • barS is molar entropy in "J/mol"cdot"K".
  • barV is molar volume in "L/mol".
  • barH is molar enthalpy in "J/mol".

First, let's evaluate the right-hand side. The molar volumes are:

barV_"ice" = [(0.9168 cancel"g")/cancel("cm"^3) xx (1000 cancel("cm"^3))/("1 L") xx ("1 mol")/(18.015 cancel"g water")]^(-1) = "0.01965 L/mol"

barV_"water" = [(0.998 cancel"g")/cancel("cm"^3) xx (1000 cancel("cm"^3))/("1 L") xx ("1 mol")/(18.015 cancel"g water")]^(-1) = "0.01805 L/mol"

Therefore,

DeltabarV_("ice"->"water") = "0.01805 L/mol" - "0.01965 L/mol" = -"0.0016 L/mol"

i.e. ice contracts when it melts. Hence, the right-hand side is:

(DeltabarH_(tr))/(T_(tr)DeltabarV_"tr") = (333.5 cancel"J""/"cancel"g" xx (18.015 cancel"g")/(cancel"1 mol"))/("273.15 K" cdot (-0.0016 cancel"L""/"cancel"mol")) xx (cancel"1 L"cdot"atm")/(101.3cancel"J")

= -"7.53 atm/K"

So, given the change in temperature is "1 K",

color(blue)(DeltaP) = DeltaT(-"7.53 atm/K") = color(blue)(-"7.53 atm")