LHS=tan20+tan80+tan140LHS=tan20+tan80+tan140
=tan20+tan80+tan(180-40)=tan20+tan80+tan(180−40)
=tan20+tan80-tan 40=tan20+tan80−tan40
=tan20+sin 80/cos 80-sin 40/cos 40=tan20+sin80cos80−sin40cos40
=sin 20/cos 20+(sin 80cos 40-cos 80sin 40)/(cos 80cos 40)=sin20cos20+sin80cos40−cos80sin40cos80cos40
=(sin 20cos 80cos 40+sin 40cos 20) /(cos 20cos 80cos 40)=sin20cos80cos40+sin40cos20cos20cos80cos40
Now denominator of this expression
=cos 20cos 80cos 40=cos20cos80cos40
=(4*2sin 20cos 20cos 40cos 80)/(8sin 20)=4⋅2sin20cos20cos40cos808sin20
=(2*2sin 40cos 40cos 80)/(8sin 20)=2⋅2sin40cos40cos808sin20
=(2sin 80cos 80)/(8sin 20)=2sin80cos808sin20
=(sin 160)/(8sin 20)=sin1608sin20
=(sin (180-20))/(8sin 20)=sin(180−20)8sin20
=(sin 20)/(8sin 20)=sin208sin20
=1/8=18
Hence
LHS=8(sin 20cos 80cos 40+sin 40cos 20)LHS=8(sin20cos80cos40+sin40cos20)
=4sin 20*(2cos 80cos 40)+4*2sin 40cos 20=4sin20⋅(2cos80cos40)+4⋅2sin40cos20
=4sin 20(cos 120+cos 40)+4(sin 60+sin 20)=4sin20(cos120+cos40)+4(sin60+sin20)
=4sin 20(-1/2+cos 40)+4(sqrt3/2+sin 20)=4sin20(−12+cos40)+4(√32+sin20)
=-2sin 20+4sin 20cos 40+2sqrt3+4sin 20=−2sin20+4sin20cos40+2√3+4sin20
=4sin 20cos 40+2sqrt3+2sin 20=4sin20cos40+2√3+2sin20
=2(sin 60-sin 20)+2sqrt3+2sin 20=2(sin60−sin20)+2√3+2sin20
=2(sqrt3/2-sin 20)+2sqrt3+2sin 20=2(√32−sin20)+2√3+2sin20
= sqrt3-2sin 20+2sqrt3+2sin 20=√3−2sin20+2√3+2sin20
=3sqrt3=3√3