What is the Cartesian form of (-4,(-21pi)/4))?

2 Answers
Jul 26, 2018

(2sqrt2, -2sqrt2)

Explanation:

We have the coordinate (-4, (-21pi)/4) in polar form.

Coordinates in polar form have the standard form (color(green)(r), color(purple)(Θ)).

To convert from polar form to Cartesian form, we use the following formulas:

  • color(red)(x) = color(green)(r)coscolor(purple)(Θ)
  • color(blue)(y) = color(green)(r)sincolor(purple)(Θ)

Now, let's plug stuff in. We know color(green)(r) = -4 and color(purple)(Θ) = (-21pi)/4

color(red)(x) = (-4)*cos((-21pi)/4)

color(red)(x) = (-4)*(-sqrt2/2)

color(red)(x) = 2sqrt2

color(blue)(y) = (-4)*sin((-21pi)/4)

color(blue)(y) = (-4)*(sqrt2/2)

color(blue)(y) = -2sqrt2

We get color(red)(x) = 2sqrt2 and color(blue)(y) = -2sqrt2, making our Cartesian coordinate (2sqrt2, -2sqrt2).

(2\sqrt2, -2\sqrt2)

Explanation:

Cartesian coordinates (x, y) of given point (r, \theta)\equiv(-4, {-21\pi}/4) are given as

x=r\cos\theta

=-4\cos(-{21\pi}/4)

=-4\cos({5\pi}/4)

=-4(-1/\sqrt2)

=2\sqrt2

y=r\sin\theta

=-4\sin(-{21\pi}/4)

=4\sin({5\pi}/4)

=4(-1/\sqrt2)

=-2\sqrt2

hence the cartesian coordinates of given point are

(x, y)\equiv(2\sqrt2, -2\sqrt2)